Processing math: 100%
Subalgebra A14+A11E16
114 out of 119
Computations done by the calculator project.

Subalgebra type: A14+A11 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from A14 .
Centralizer: T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: E16
Basis of Cartan of centralizer: 1 vectors: (1, 0, 2, 0, -2, -4)

Elements Cartan subalgebra scaled to act by two by components: A14: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, (0, 0, 0, -1, 0, 0): 2, (0, 0, 0, 0, -1, 0): 2, A11: (1, 0, 0, 0, 0, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 27.
Negative simple generators: g36, g2, g4, g5, g1
Positive simple generators: g36, g2, g4, g5, g1
Cartan symmetric matrix: (2100012100012100012000002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (2100012100012100012000002)
Decomposition of ambient Lie algebra: V2ω5Vω3+ω5Vω2+ω5Vω1+ω4Vω4Vω1V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω1+12ψVω3+ω5+6ψV2ω5Vω1+ω4V0Vω2+ω56ψVω412ψ
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 7) ; the vectors are over the primal subalgebra.h61/2h5+1/2h3+1/4h1g29g6g32g24g7g1
weight0ω1ω4ω1+ω4ω2+ω5ω3+ω52ω5
weights rel. to Cartan of (centralizer+semisimple s.a.). 0ω1+12ψω412ψω1+ω4ω2+ω56ψω3+ω5+6ψ2ω5
Isotypic module decomposition over primal subalgebra (total 7 isotypic components).
Isotypical components + highest weightV0 → (0, 0, 0, 0, 0, 0)Vω1+12ψ → (1, 0, 0, 0, 0, 12)Vω412ψ → (0, 0, 0, 1, 0, -12)Vω1+ω4 → (1, 0, 0, 1, 0, 0)Vω2+ω56ψ → (0, 1, 0, 0, 1, -6)Vω3+ω5+6ψ → (0, 0, 1, 0, 1, 6)V2ω5 → (0, 0, 0, 0, 2, 0)
Module label W1W2W3W4W5W6W7
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Cartan of centralizer component.
h61/2h5+1/2h3+1/4h1
g29
g20
g16
g11
g6
g6
g11
g16
g20
g29
Semisimple subalgebra component.
g32
g14
g34
g10
g8
g35
g5
g4
g2
g36
h5
h4
h2
h6+2h5+3h4+2h3+2h2+h1
g4
2g5
g2
g36
g8
g10
g35
g34
g14
g32
g24
g27
g21
g23
g30
g25
g19
g26
g33
g28
g15
g13
g22
g31
g9
g18
g17
g3
g12
g7
g7
g12
g3
g17
g18
g9
g31
g22
g13
g15
g28
g33
g26
g19
g25
g30
g23
g21
g27
g24
Semisimple subalgebra component.
g1
h1
2g1
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0ω1
ω1+ω2
ω2+ω3
ω3+ω4
ω4
ω4
ω3ω4
ω2ω3
ω1ω2
ω1
ω1+ω4
ω1+ω2+ω4
ω1+ω3ω4
ω2+ω3+ω4
ω1+ω2+ω3ω4
ω1+ω2ω3
ω3+2ω4
ω2+2ω3ω4
ω1+2ω2ω3
2ω1ω2
0
0
0
0
ω22ω3+ω4
ω32ω4
ω12ω2+ω3
2ω1+ω2
ω1ω2ω3+ω4
ω2ω3ω4
ω1ω2+ω3
ω1ω3+ω4
ω1ω2ω4
ω1ω4
ω2+ω5
ω1ω2+ω3+ω5
ω2ω5
ω1+ω3+ω5
ω1ω3+ω4+ω5
ω1ω2+ω3ω5
ω1+ω2ω3+ω4+ω5
ω1+ω3ω5
ω1ω4+ω5
ω1ω3+ω4ω5
ω2+ω4+ω5
ω1+ω2ω4+ω5
ω1+ω2ω3+ω4ω5
ω1ω4ω5
ω2+ω3ω4+ω5
ω2+ω4ω5
ω1+ω2ω4ω5
ω3+ω5
ω2+ω3ω4ω5
ω3ω5
ω3+ω5
ω2ω3+ω4+ω5
ω3ω5
ω1ω2+ω4+ω5
ω2ω4+ω5
ω2ω3+ω4ω5
ω1+ω4+ω5
ω1ω2+ω3ω4+ω5
ω1ω2+ω4ω5
ω2ω4ω5
ω1+ω3ω4+ω5
ω1+ω4ω5
ω1ω3+ω5
ω1ω2+ω3ω4ω5
ω1+ω2ω3+ω5
ω1+ω3ω4ω5
ω1ω3ω5
ω2+ω5
ω1+ω2ω3ω5
ω2ω5
2ω5
0
2ω5
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer0ω1+12ψ
ω1+ω2+12ψ
ω2+ω3+12ψ
ω3+ω4+12ψ
ω4+12ψ
ω412ψ
ω3ω412ψ
ω2ω312ψ
ω1ω212ψ
ω112ψ
ω1+ω4
ω1+ω2+ω4
ω1+ω3ω4
ω2+ω3+ω4
ω1+ω2+ω3ω4
ω1+ω2ω3
ω3+2ω4
ω2+2ω3ω4
ω1+2ω2ω3
2ω1ω2
0
0
0
0
ω22ω3+ω4
ω32ω4
ω12ω2+ω3
2ω1+ω2
ω1ω2ω3+ω4
ω2ω3ω4
ω1ω2+ω3
ω1ω3+ω4
ω1ω2ω4
ω1ω4
ω2+ω56ψ
ω1ω2+ω3+ω56ψ
ω2ω56ψ
ω1+ω3+ω56ψ
ω1ω3+ω4+ω56ψ
ω1ω2+ω3ω56ψ
ω1+ω2ω3+ω4+ω56ψ
ω1+ω3ω56ψ
ω1ω4+ω56ψ
ω1ω3+ω4ω56ψ
ω2+ω4+ω56ψ
ω1+ω2ω4+ω56ψ
ω1+ω2ω3+ω4ω56ψ
ω1ω4ω56ψ
ω2+ω3ω4+ω56ψ
ω2+ω4ω56ψ
ω1+ω2ω4ω56ψ
ω3+ω56ψ
ω2+ω3ω4ω56ψ
ω3ω56ψ
ω3+ω5+6ψ
ω2ω3+ω4+ω5+6ψ
ω3ω5+6ψ
ω1ω2+ω4+ω5+6ψ
ω2ω4+ω5+6ψ
ω2ω3+ω4ω5+6ψ
ω1+ω4+ω5+6ψ
ω1ω2+ω3ω4+ω5+6ψ
ω1ω2+ω4ω5+6ψ
ω2ω4ω5+6ψ
ω1+ω3ω4+ω5+6ψ
ω1+ω4ω5+6ψ
ω1ω3+ω5+6ψ
ω1ω2+ω3ω4ω5+6ψ
ω1+ω2ω3+ω5+6ψ
ω1+ω3ω4ω5+6ψ
ω1ω3ω5+6ψ
ω2+ω5+6ψ
ω1+ω2ω3ω5+6ψ
ω2ω5+6ψ
2ω5
0
2ω5
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M0Mω1+12ψMω3+ω4+12ψMω2+ω3+12ψMω1+ω2+12ψMω4+12ψMω412ψMω1ω212ψMω2ω312ψMω3ω412ψMω112ψMω1+ω4Mω3+2ω4Mω2+ω3+ω4Mω1+ω2+ω4M2ω1ω2Mω1+ω2ω3Mω1+ω3ω4Mω1ω2ω3+ω4Mω22ω3+ω4Mω12ω2+ω34M0Mω1+2ω2ω3Mω2+2ω3ω4Mω1+ω2+ω3ω4Mω1ω3+ω4Mω1ω2+ω3M2ω1+ω2Mω1ω2ω4Mω2ω3ω4Mω32ω4Mω1ω4Mω1ω3+ω4+ω56ψMω1ω2+ω3+ω56ψMω2+ω56ψMω2+ω4+ω56ψMω1+ω2ω3+ω4+ω56ψMω1+ω3+ω56ψMω1ω4+ω56ψMω3+ω56ψMω2+ω3ω4+ω56ψMω1+ω2ω4+ω56ψMω1ω3+ω4ω56ψMω1ω2+ω3ω56ψMω2ω56ψMω2+ω4ω56ψMω1+ω2ω3+ω4ω56ψMω1+ω3ω56ψMω1ω4ω56ψMω3ω56ψMω2+ω3ω4ω56ψMω1+ω2ω4ω56ψMω1ω2+ω4+ω5+6ψMω2ω3+ω4+ω5+6ψMω3+ω5+6ψMω1+ω4+ω5+6ψMω1ω3+ω5+6ψMω1ω2+ω3ω4+ω5+6ψMω2ω4+ω5+6ψMω2+ω5+6ψMω1+ω2ω3+ω5+6ψMω1+ω3ω4+ω5+6ψMω1ω2+ω4ω5+6ψMω2ω3+ω4ω5+6ψMω3ω5+6ψMω1+ω4ω5+6ψMω1ω3ω5+6ψMω1ω2+ω3ω4ω5+6ψMω2ω4ω5+6ψMω2ω5+6ψMω1+ω2ω3ω5+6ψMω1+ω3ω4ω5+6ψM2ω5M0M2ω5
Isotypic characterM0Mω1+12ψMω3+ω4+12ψMω2+ω3+12ψMω1+ω2+12ψMω4+12ψMω412ψMω1ω212ψMω2ω312ψMω3ω412ψMω112ψMω1+ω4Mω3+2ω4Mω2+ω3+ω4Mω1+ω2+ω4M2ω1ω2Mω1+ω2ω3Mω1+ω3ω4Mω1ω2ω3+ω4Mω22ω3+ω4Mω12ω2+ω34M0Mω1+2ω2ω3Mω2+2ω3ω4Mω1+ω2+ω3ω4Mω1ω3+ω4Mω1ω2+ω3M2ω1+ω2Mω1ω2ω4Mω2ω3ω4Mω32ω4Mω1ω4Mω1ω3+ω4+ω56ψMω1ω2+ω3+ω56ψMω2+ω56ψMω2+ω4+ω56ψMω1+ω2ω3+ω4+ω56ψMω1+ω3+ω56ψMω1ω4+ω56ψMω3+ω56ψMω2+ω3ω4+ω56ψMω1+ω2ω4+ω56ψMω1ω3+ω4ω56ψMω1ω2+ω3ω56ψMω2ω56ψMω2+ω4ω56ψMω1+ω2ω3+ω4ω56ψMω1+ω3ω56ψMω1ω4ω56ψMω3ω56ψMω2+ω3ω4ω56ψMω1+ω2ω4ω56ψMω1ω2+ω4+ω5+6ψMω2ω3+ω4+ω5+6ψMω3+ω5+6ψMω1+ω4+ω5+6ψMω1ω3+ω5+6ψMω1ω2+ω3ω4+ω5+6ψMω2ω4+ω5+6ψMω2+ω5+6ψMω1+ω2ω3+ω5+6ψMω1+ω3ω4+ω5+6ψMω1ω2+ω4ω5+6ψMω2ω3+ω4ω5+6ψMω3ω5+6ψMω1+ω4ω5+6ψMω1ω3ω5+6ψMω1ω2+ω3ω4ω5+6ψMω2ω4ω5+6ψMω2ω5+6ψMω1+ω2ω3ω5+6ψMω1+ω3ω4ω5+6ψM2ω5M0M2ω5

Semisimple subalgebra: W_{4}+W_{7}
Centralizer extension: W_{1}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 420.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00, 0.00): (280.00, 480.00)
1: (0.00, 1.00, 0.00, 0.00, 0.00, 0.00): (260.00, 540.00)
2: (0.00, 0.00, 1.00, 0.00, 0.00, 0.00): (240.00, 500.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00, 0.00): (220.00, 460.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 420.00)
5: (0.00, 0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 420.00)



Made total 614 arithmetic operations while solving the Serre relations polynomial system.